2,094 research outputs found

    A qualitative assessment of direct-labeled cDNA products prior to microarray analysis

    Get PDF
    BACKGROUND: The success of the microarray process in determining differential gene expression of thousands of genes is dependent upon the quality and integrity of the starting RNA, this being particularly true of direct labeling via a reverse transcription procedure. Furthermore, an RNA of reasonable quality still may not yield reliable hybridization data if the labeling efficiency was poor. RESULTS: Here we present a novel assay for assessing the quality of directly labeled fluorescent cDNA prior to microarray hybridization utilizing the Agilent 2100 Bioanalyzer, which employs microfluidic technology for the analysis of nucleic acids and proteins. Using varying amounts of RNase to simulate RNA degradation, we show the strength of this un-advertised assay in determining the relative amounts of cDNA obtained from a direct labeling reaction. CONCLUSION: Utilization of this method in the lab will help to prevent the costly mistake of hybridizing poor quality direct labeled products to expensive arrays

    Non-Riemannian Gravity and the Einstein-Proca System

    Get PDF
    We argue that all Einstein-Maxwell or Einstein-Proca solutions to general relativity may be used to construct a large class of solutions (involving torsion and non-metricity) to theories of non-Riemannian gravitation that have been recently discussed in the literature.Comment: 9 pages Plain Tex (No Figures), Letter to Editor Classical and Quantum Gravit

    Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning

    Get PDF
    AbstractActivity-dependent pruning of synaptic contacts plays a critical role in shaping neuronal circuitry in response to the environment during postnatal brain development. Although there is compelling evidence that shrinkage of dendritic spines coincides with synaptic long-term depression (LTD), and that LTD is accompanied by synapse loss, whether NMDA receptor (NMDAR)-dependent LTD is a required step in the progression toward synapse pruning is still unknown. Using repeated applications of NMDA to induce LTD in dissociated rat neuronal cultures, we found that synapse density, as measured by colocalization of fluorescent markers for pre- and postsynaptic structures, was decreased irrespective of the presynaptic marker used, post-treatment recovery time, and the dendritic location of synapses. Consistent with previous studies, we found that synapse loss could occur without apparent net spine loss or cell death. Furthermore, synapse loss was unlikely to require direct contact with microglia, as the number of these cells was minimal in our culture preparations. Supporting a model by which NMDAR-LTD is required for synapse loss, the effect of NMDA on fluorescence colocalization was prevented by phosphatase and caspase inhibitors. In addition, gene transcription and protein translation also appeared to be required for loss of putative synapses. These data support the idea that NMDAR-dependent LTD is a required step in synapse pruning and contribute to our understanding of the basic mechanisms of this developmental process

    Recent Advances in Laboratory Infrared Spectroscopy of Polycyclic Aromatic Hydrocarbons: PAHs in the Far Infrared

    Get PDF
    Over 25 years of observations and laboratory work have shown that the mid-IR spectra of a majority of astronomical sources are dominated by emission features near 3.3, 6.2, 7.7, and 11.2 microns, which originate in free polycyclic aromatic hydrocarbon (PAH) molecules. PAHs dominate the mid-IR emission from many galactic and extragalactic objects. As such, this material tracks a wide variety of astronomical processes, making this spectrum a powerful probe of the cosmos Apart from bands in the mid-IR, PAHs have bands spanning the Far-IR (FIR) and emission from these FIR features should be present in astronomical sources showing the Mid-IR PAH bands. However, with one exception, the FIR spectral characteristics are known only for a few neutral small PAHs trapped in salt pellets or oils at room temperature, data which is not relevant to astrophysics. Furthermore, since most emitting PAHs responsible for the mid-IR astronomical features are ionized, the absence of any experimental or theoretical PAH ion FIR spectra will make it impossible to correctly interpret the FIR data from these objects. In view of the upcoming Herschel space telescope mission and SOFIA's FIR airborne instrumentation, which will pioneer the FIR region, it is now urgent to obtain PAH FIR spectra. This talk will present an overview recent advances in the laboratory spectroscopy of PAHs, Highlighting the FIR spectroscopy along with some quantum calculations

    Dark Matter Gravitational Interactions

    Full text link
    We argue that the conjectured dark mater in the Universe may be endowed with a new kind of gravitational charge that couples to a short range gravitational interaction mediated by a massive vector field. A model is constructed that assimilates this concept into ideas of current inflationary cosmology. The model is also consistent with the observed behaviour of galactic rotation curves according to Newtonian dynamics. The essential idea is that stars composed of ordinary (as opposed to dark matter) experience Newtonian forces due to the presence of an all pervading background of massive gravitationally charged cold dark matter. The novel gravitational interactions are predicted to have a significant influence on pre-inflationary cosmology. The precise details depend on the nature of a gravitational Proca interaction and the description of matter. A gravitational Proca field configuration that gives rise to attractive forces between dark matter charges of like polarity exhibits homogeneous isotropic eternal cosmologies that are free of cosmological curvature singularities thus eliminating the horizon problem associated with the standard big-bang scenario. Such solutions do however admit dense hot pre-inflationary epochs each with a characteristic scale factor that may be correlated with the dark matter density in the current era of expansion. The model is based on a theory in which a modification of Einsteinian gravity at very short distances can be expressed in terms of the gradient of the Einstein metric and the torsion of a non-Riemannian connection on the bundle of linear frames over spacetime. Indeed we demonstrate that the genesis of the model resides in a remarkable simplification that occurs when one analyses the variational equations associated with a broad class of non-Riemannian actions.Comment: 40 pages, 4 Postscript figure

    On the motion of spinning test particles in plane gravitational waves

    Full text link
    The Mathisson-Papapetrou-Dixon equations for a massive spinning test particle in plane gravitational waves are analysed and explicit solutions constructed in terms of solutions of certain linear ordinary differential equations. For harmonic waves this system reduces to a single equation of Mathieu-Hill type. In this case spinning particles may exhibit parametric excitation by gravitational fields. For a spinning test particle scattered by a gravitational wave pulse, the final energy-momentum of the particle may be related to the width, height, polarisation of the wave and spin orientation of the particle.Comment: 11 page

    Preparation of polyfunctional diorganomercurials and their transmetallation to diorganozincs. Applications to the preparation of optically active secon

    Full text link
    Two new methods of preparation of functionalized diorganomercurials have been developed. The first method involves a substitution reaction of (ICH2 Their transmetallation with zinc dust (toluene, 80[deg]C, 3-5 h) affords dialkylzincs which add enantioselectively to aldehydes in the presence of a caPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29788/1/0000130.pd
    corecore